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Abstract

Estimation of the state of the atmosphere with the Kalman filter remains a distant goal

because of high computational cost of evolving the error covariance for both linear and non-

linear systems. Wavelet approximation is presented here as a possible solution that efficiently

compresses both global and local covariance information. We demonstrate the compression

characteristics on the the error correlation field from a global two-dimensional chemical

constituent assimilation, and implement an adaptive wavelet approximation scheme oll the

assimilation of the one-dimensional Burger's equation. In the former problem, we show

that 99% of the error correlation can be represented by just 3% of the wavelet coefficients,

with good representation of localized features. In the Burger's equation assimilation, the

discrete linearized equations (tangent linear model) and analysis covariance are projected

onto a wavelet basis and truncated to just 6% of the coefficients. A nearly optimal forecast

is achieved and we show that errors due to truncation of the dynamics are no greater than

the errors due to covariance truncation.



Introduction

Data. Assimilation is in general the estimation of the state of a. system achieved through

the combination of observations and a physical/dynamical model of the system. Most data

assimilation systems use Bayesian estimation theory to obtain an optimal estimate of the

state. Achieving this optimal estimate requires the minimization of a cost function which

in turn requires a statistical knowledge of the forecast and observation errors. In schemes

where the error statistics are not evolved in time, such as statistical interpolation or 3DVAR,

errors are generally assumed homogeneous and isotropic, inspite of the numerous physical

sources of inhomogeneity (eg fronts), Desroziers (1993))..In the Kahnan filter, the forecast

errors consist of propagated initial errors and errors created by the model (which are in turn

propagated forward). Errors statistics are also altered by the observation network, which

itself is highly non-uniform. Thus the propagated error fields produced by the Kalman filter

contain the inhomogeneities which represent both the physical and data driven variations in

accuracy. Localized features like fronts are resolved to the extent that the computational grid

allows. However, propagation of forecast errors is perhaps the single most computationally

expensive component of a data assimilation system (though rapid increases in observations

may change this). Approximation of the propagation step therefore has become an important

area of investigation.

Numerous techniques which approximate the forecast errors and their propagation have

been proposed and tested. Approximation means that some part of the error covariance

must be neglected and ideally one should neglect the part that has the least impact on the

assimilation results. These include evolution of error variance only (Dee, 199t), SVD and

eigen-decomposition (Todling and Cohn, 1994), (Tippet et al 2000), Error subspace estima-

tion (Lermnsiux and Robinson, 1999) and wavelet representation (Chin et al. 19q4,1999),

(Tangborn and Zhang, 2000). Farrell and Ioannou (2001a,b) have developed a "balanced

truncation" method which retains both leading terms in both the covariance and the dy-

namics in terms of Hankel singular values. The ensemble Kahnan filter (Evenson, 1994;

[ioutekamer and Mitchell, 1998) evolves error statistics using an ensemble of forecasts rather

than al)plying the dynamical model (or its tangent linear model) to the full error covariance.

In present work, we revisit the wavelet approximation scheme in order to understand



how to understand how both non-linearity and the longer term evolution will affect the

efficiency of waveletexpansionsto representand propagate error covariances.We focus in

particular on the scalefeaturesof error covariancesand howthey influencethe successor lack

of successof the wavelet approximation on different dynamical systems. A major concern

is the adaptivity of the scheme,so that there is a meansto include waveletcoefficientsthat

have beentruncated, but becomeimportant in later stagesof the assimilation. The issueof

truncation of the propagator dynamicsraisedby Farrell and Ioannou is also addressed.

The major differencebetweenwavelet representationand the other schemesis local rep-

resentation. Atmospheric dynamics are inherently local, and it is local structures which

often drive larger scale phenomena..For examplecrossinga front might require less than

two or three grid points, and there is noguaranteethat the most energeticEOFs or singular

valueswill capture it. Yet a front may impact atmospheric motion over much larger scale

regions. Error covariancesneedto be able to resolvethese frontal structures becausethey

are regionsof largeerror variance. A higher weighting to observationswill result only if the

error covariancesare correctly calculatedon thesescales.

Waveletrepresentationof data allowsfor this localization, and thereforehas the potential

to overcomesomeof theseobstaclesto efficient storageand propagationof error covariances.

Wavelet coefficientsmay in fact be a useful way to uncover localized information on model

error. In this paper we explore the representationand propagation of forecast errors by

wavelet expansion. Our approach is to determine not only when the schemeis successful,

but when it fails (as the number of retained coefficientsare reduced). In this way we can

determine what features in the error covarianceare essential to achieving optimal or near

optimal assimilation.

The particular wavelet transform usedin this work comesfrom the family of compactly

supported orthonormal wavelets introduced by Daubechies(1988). One could proceedby

employing a wavelet-Galerkinscheme(Restrepoand Leaf, 1995) for solving the covariance

evolution equation, but this presentsa number of difficulties. Thesecan be bypassedby

starting with discretized equations from another numerical schemeand projecting them

onto a wavelet basis(Tangborn and Zhang,2000). This approach is particularly attractive

becauseof the many existing data assimilation systems that could be adapted to these

approximations.



The wavelet transform results in coefficients that are local in location and scale, and

at each finer scale, the wavelength reduces by half. At each scale there then are twice as

many coefficients. We use the standard notation of j to represent scale and k to represent

translations. The total number of scales represented by a transform of.n points is d =

log(n)/log(2) and the number of translations in a given scale j is K = 2j. Because each

coefficient represents a given scale and location (unlike spectral representation in which only

scale is represented), there is a greater flexibility to retain important localized features. This

is particularly important when only a fraction of the coefficients are retained.

In this paper we display the wavelet coefficient representation of covariances (and corre-

lations) as a single column for each dimension, hnages of wavelet coefficients will vary from

coarse to finer scales (as with other spectral representation), but the finest scale is half of

the coefficient vector.

In the first part of the paper we examine the evolution of the forecast correlation fl'om

Kalman filter experiments carried out by Menard et al. (2000) and Menard and Chang

(2000). The propagation of error correlations for chemical constituents in the stratosphere is

governed essentially by the horizontal wind field. The resulting correlation structure becomes

highly complex with a great deal of small scale structure. In the second part of this paper

we demonstrate the wavelet approximation of the error covariance propagation step in the

extended Kalman filter applied to the 1-d Burger's equation.
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Representation of Constituent Correlation Errors

Figure 1 shows the evolution of the error correlation from the Kalma.n filter assimilation

of CLAES (.7H4 over a 7 day period. An initial first order autoregressive (FOAR) correlation

model is used as the initial condition (a), and is given by

C(i,j)=exp(Iri-rJ') "L (1)

where ri and rj are the position vectors of to points on the sphere. After several days of

wind driven movement the correlations becomes highly dependent on the local wind fields,

with a wide range of significant length scales, as shown in Figure 1.

When we project these correlations onto a wavelet basis (Daubl2), we find that 32 (out

of 2048 coefficients) contain 99.7 % of the total energy' of the initial correlation function.

On days 3,5 and 7, the energy contained in the largest 32 coefficients is 97.7, 99.3 and

99.2 % respectively. Thus, even as the complexity of the correlation field grows, there is

no significant, decrease in the efficiency of the wavelet representation in terms of the energy

contained in the first 32 coefficients. We define the fl'action of energy in a reconstruction as

^ 2

_ (ET.,__,r (2)
Etot V"_'°_l Ck

/--.k= 1

where C. is the k th largest wavelet coefficient of the correlation function C(i,j). Figures 2(a-b)

show the evolution of the wavelet representation of the correlation at the same times. In

each direction (longitude and latitude), the wavelet coefficients are ordered from coarser to

finer scales. At scale ,1 there are 2 J translations and the finest scale will contain half the

coefficients. From Figure 2(a), we see that initially just few coefficients contain most of the

energy of the correlation field. There are no significant small scale coefficients. At later

times (Fig. 2(b-d)) there is a small increase in the magnitudes of a few of the smaller scale

coefficients, but only in the meridionaldirection. The stretching in the zonal direction tends

to create short scale variations primarily in the zonal meridional direction. Thus, there are

essentially, no small scale wavelet coefficients in the zonal direction, even after 7 days. This

type of structure keeps the dimensionality of the wavelet representation at a mininmm since

only, a tiny fraction of the coefficients have any significant magnitude.

Reconstruction of the correlations from the 32 largest coefficients (via fast wavelet inverse

transform) results in the correlations shown in Figures 3(a-d). A qualitative inspection shows



that much of the localized structure in the original correlations has been preserved in the

low dimensional wavelet representation. The reconstructions are of course not perfect, and

the question arises as to what has been lost, and what what scale. This can be determined

by taking the difference between Figures 2 and 3, transforming the result to wavelet space

and plotting the result for each scale separately. Figure 4(a) shows the difference between

the full and :12 term approximation of the correlation on day 7.

The maximum error due to the wavelet approximation is about 0.1, at any given scale.

If we project these differences onto the wavelet basis and separate out the scales (by saving

only the jth scale in each case) before applying the inverse transform we can identify which

scales contribute the most to the truncation errors. The two-dimensional wavelet transform,

like the 2-d Fourier transform, allows for length scales in different directions to be specified

independently. Since the grid is 64 x 32, there are 6 (j=0-5) scales in the zonal direction and

5 scales (0-4) in the meridional direction. Not all of these 30 possible scale combinations

are important (ie contain larger errors), and we summarize them by plotting the maximum

error for each combination in Figure 4(b). In the longitudinal direction, when the latitudinal

scales are large, the maximum errors occur at jx = 2. which corresponds to an average

scale of 90 degrees. At finer latitude scales, the maximum error in the zonal direction is

also concentrated in the finer scales. The dependency on latitudinal scale is an almost

monotonically increasing truncation error with decreasing scale. The largest absolute error,

occurs at j, = 3 and jy = 3, which corresponds to an average scales of 90 and 45 degrees in

the zonal and meridional directions, respectively. The errors incurred in the correlation by

truncating the wavelet expansion to 32 of 2048 total coefficients are never larger then 0.1,

and at coarser scales are always less than 0.05.

Some examples of the scale decomposition of the truncation errors are shown in Figures

•5(a-h). Figures 5(a-d) are all at scale j=3 (22.5 °) in the meridional direction and vary from

j=2 (90 °) to j=4 (22.5 °) in the zonal direction. As the zonal scale decreases, the truncation

errors become larger and are concentrated at the edge of the non-zero correlation region. A

similar pattern is seen in the j=4 (11.25 °) meridional scale (Figures .5(e-h)). This error anal-

ysis suggests that a significant portion of small scale correlation (and therefore covariance)

structure can be represented when just 32 out of 2048 (or 1.6 %) wavelet coefficients are

retained. Correlation loss due to wavelet truncation occurs along the edge where correlation

values are relatively small. It doesn't appear however, that information on the location of



this edge has been lost (coral)are Figures l(d) and 3(d), for example. This may indicate that

the structure essential to successful data assimilation is included in this small subspace.

Propagation of Error Covariances in Wavelet Space

The successful representation of a variety of correlation scales is only part of the goal of

the wavelet approximation presented here. A much harder problem is the propagation of

error covariances by evolving only the subspace. This approach opens up a host of difficulties,

including changes to the propagator structure and evolution of the covariance subspace itself.

We first deal with the issue of structural changes to the propagator. The propagator @ is

really just a representation of the matrix system,

Auk+ 1 = Bu k (3)

by

u-+_ = _I,un (4)

where u k is the state of the system at time tk and @ = A-lB. In most NWP models,

A has some banded structure, which is taken advantage of when choosing a solution algo-

rithm. The actual computation is based on 3 while 4 is a convenient notation for presenting

the propagation portion of a data assimilation system. The evolution of the forecast error

covariance P/= ((u t - uf)(u t - u/)} can then be calculated by

P_+I iltlO/fit T---- aL k:z

The numerical algorithm is actually carrying out

AP_+IA r = BP_.B r

The analysis error covariance is projected onto a wavelet basis

= WPW r

(.5)

(6)

(7)

where W is the matrix representation of the fast wavelet transform. In order to carry out

the covariance propagation, we need to project the propagator onto the wavelet basis as well,

= WAW r (8)



._r = WATw T

I_ T = WBW T

]_T = WBTw T

Structural changes to the matrices A,B depend on their initial form.

(9)

(10)

(11)

One might be con-

cerned that the sparse banded structure that occurs in finite difference discretization of

convection-diffusion type problems might be destroyed by the transform to wavelet space.

Quite fortunately, the reverse occurs: matrices become more sparse. Ground breaking work

by Beylkin el al. (1991) showed that diagonally dominant matrices become sparse when

projected onto a wavelet basis. This is another sort of compression since fewer terms are

needed to represent the operator, thereby reducing the operation count. The meaning of

this near diagonalization of the propagator is that there is much less interaction between

the wavelet coefficients for the covariance during than there is in physical space. This is a

natural effect of the orthogonality and localization of the basis.

We can demonstrate this on a relatively simple system, namely the finite difference ap-

proximation to the 2-d convection diffusion equation (univariate). This system, when dis-

cretized as n x n, results in a sparse pentadiagonal matrix structure (n _ x n 2) where the

band width is 2n. Solution of this system generally requires O(n 3) operations. Figure 6

shows a 40 x 40 pentadiagonal matrix (a) and its projection onto the Daubechies wavelet

basis having 12 filter coefficients (b)(henceforth called Daubl2). In wavelet space the matrix

is no longer pentadiagonal, having a still sparse hierarchically band diagonal form. If we can

truncate the very small off diagonal terms (they are about 1/100 th the size of the diagonal

terms, we have then ended up with a diagonal systein. Other options include using solvers

created specifically for solving systems of this form (Beylkin et al, 1991) which require only

O(N) operations. The end result is a system, already reduced by a factor of 50 or more

which can be solved by an O(N) algorithm.

In the previous section we demonstrated the compression characteristics of the wavelet

transform on error correlations from constituent assimilation by reordering the wavelet coef-

ficients by descending magnitude before truncating. We must therefore address the impact

of coefficient reordering on the matrix structure. If the error covariance is simply reordered

according to the magnitude of each element, we cannot retain the essentially diagonal form



of Figure 6(t)). However,if the reordering is (loneonly for the purpose truncation, and the

retainedcoefficients(and the correspondingmatrix elements)arekept in their original order,

then this structure will alsobe retained.

The ordering and subsequenttruncation of the wavelet coefficientsalso introduces the

problem of lossof potentially important dynamics from the propagator when the TLM.

Farrell and Ioannou (2001a,b)dealt with this issueby using a balancing transformation to

obtain a representationin coordinateswherethe stochasticoptimMs (fastestgrowing modes)

and the empirical orthogonal functions (EOFs) coincide. The simple system of figure 6 is

normal and no special treatment is needed.However,the TLM of Burger's equation in the

next section is non-normal and dynamicstruncation may result in someeventual covariance

loss. While there is not yet a general method for ensuring that the important parts of the

dynamics are retained, we can make some conclusions about this on a case by case basis.

Another issue that needs to be addressed is adaptivity of the scheme. As the error

covariance evolves in time, we expect that the wavelet coefficients or modes that are largest

should change. For example, as a frontal system moves in time, it should carry with it the

associated larger error variances. Since the wavelet representation is local, coefficients in the

region that the front moves into should grow and become more important. How can we deal

with resulting variability in the coefficient ordering'?

This problem is partially resolved by the assimilation step itself. We must transform

the propagated error covariance back to physical space in order to calculate the gain matrix

for weighting the observations and forecast. At the same time, the analysis covariance is

calculated in physical space using both the gain matrix and the propagated error covariance.

Therefore the analysis covariance will depend on the observation network. When this new

analysis covariance is projected onto the wavelet basis, a new set of coefficients will be

reordered and truncated. Modes that may have been previously truncated may at this

time be retained, particularly if the observation network varies in time. This insures that

changes in the covariance structure due to the observation network do impact the ordering of

coefficients. But this will only partially solves the issue of adaptivity since we haven't really

taken into account movement taking place during the propagation step. This problem can

be seen in Figure 7 which shows the evolution of the magnitudes of the 32 largest coefficients

(a) and the smallest 1948 coefficients (b) over the 7 day period. Some of the coefficients in
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(a) grow in time, but a number decaydramatically, asadvectionalters the correlation field.

At the sametime, someof the small coefficientsin (b) increaseenoughto becomelarger

than many of the the initially large coefficients.Thus the initial ordering of coefficientswill

changesignificantly over the 7 day simulation period.

When wecarry out a the propagationof error correlations,wedon't know a priori which

coefficients are going to become important in the future. We only know which ones are

large for the initial conditions. If one makes the simple (but incorrect) assumption that the

coefficient, ordering won't change significantly in time, then a loss of representation should

be found. We tested this by using the coefficient ordering, with truncation at 32 terms, from

the initial correlation in Figure l(a). On days 3,5 and 7 the fraction of energy retained is

now 92.0 %, 96.9 % and 97.2 %, (down from 97.7,99.3,99.2) respectively. This may appear

to be a minor decrease, but the shorter length scales contain smaller energy, as defined by

2. The loss in representation should occur in the smaller scales since the initial correlation

has no small scale structures. We plot the correlation reconstruction from day 7 using these

32 term expansions in Figure 8 which show a significant, loss in small scale details of the

correlation, as expected.

We have now shown that the wavelet transform applied to the propagation equation

for error covariances can result in both reduction of the system size and an increase in the

sparcity of the system matrix. However, if the list of retained wavelet coefficients is not

constantly updated, the approximation will become poor in time, as the winds move finer

scale features to parts of the domain. If we can develop a scheme that does retain the largest

coefficients, then it is possible to vastly reduce the computational cost of error covariance

propagation in data assimilation without significant loss in accuracy. In the next section we

demonstrate this method on a simple non-linear system using the extended t<ahnan filter

(EKF).

The Extended Kahnan Filter (EKF)

V_Tehave chosen the Burger's equation to demonstrate the wavelet approximation scheme

for several reasons. Solutions to this non-linear equation tend to contain sharp frontal fea-

tures (particularly when small viscosity is used). Localized structure of this short is generally

difficult to approximate by traditional expansions (ie. spectral, eigendecomposition, SVD).
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We wish to corot)arethe successof the assimilation schemewith both the fllll extended

Kalman filter and other approximation schemes.Burger's equation with stochastic forcing

is usedas the dynamical coreof the Kalman filtering systenl.

Ou Ou 0 2u
0-7+ "_ = _'g-_ (12)

with periodic boundary conditions:

u(O,t)=u(1,t)

and initial conditions:

u(a', O) = f(x)

Discretization is carried out using second order centered difference in space and Adams-

Bashforth in time. The resulting system in matrix form is then

iu n+l = Bu n (13)

The matrices A, B are state dependent because of non-linearity. The tangent lineal' model

(TLM) of the non-linear dynamical system is created by perturbing the initial condition

at one grid point and carrying out the computation for one timestep, for each grid point.

This generates an estimate of the Jacobian matrix from which the tangent linear model

propagator @TLM can be created. The forecast is updated by the non-linear system:

u} +' = _u) (14)

An added noise vector w_ represents the model error and is Gaussian distributed, with

correlation length Lc.

u] +1 = ,I,u;_ + w2

where u} +1 is the forecast at time t TM, and up +1 is the true state.

propagator. An observation process is defined by

uo = Hut + wo

= A-1B is the

(15)

where where Uo is the observed value, H is the observation matrix, and Wo is the observational

error, which is also Gaussian distributed.
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The full extended Kahnan filter consists of the following steps:

update forecast:

u}+m = _mU2

Iitrn = lI$m represents m timesteps of the discretized systeln equations.

(as a substitute for a real physical process to observe)

n+m

u?+m = _u_ + _ w /

Update forecast covariance

Calculate Kalman gain:

(16)

Update true state

(17)

(18)

K _+m = p_+_HT(Hp_+_HT + R_+_) -'

Ul)date analysis variable

(19)

72 -{- 772

U a

Update analysis covariance

n+m n+m '
= uFm +K (uo -HuF°'/ (20)

P:+m = (I - K_+mH)p_+m (:21)

where Pf is the forecast covariance matrix, Pa is the analysis covariance matrix, Q is the

model error covariance and R is the observational error covariance. K is the Kahnan gain

matrix.

The operation count for the covariance propagation step (18) is O(N a) if we do not take

advantage of the banded structure of the matrices, (where N is the number of grid points).

If the number of observations at each analysis time is significantly tess than N, then (18) is

the most computationally intensive step in the assimilation system. It is this step on which

we are focusing the present work. The next section outlines a scheme for approximating the

error covariance propagation by a truncated wavelet expansion.

An Adaptive Wavelet Approximation to the EKE System

The wavelet-truncation scheme involves projecting both the tangent linear propagator oTLM

and the analysis covariance P= onto the wavelet basis and only a small fraction of the coeffi-

cients. The covariance propagation is then carried out in wavelet space on the smaller system.
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We repeat the Kahnan filter a lgorithn_ here with an adaptive Kalman filter approximation

scheme.

Calculation of the Kalman gain and updating of the state variable u are carried out in

physical space.

u) +m= _'mUa (22)

(2a)
n+m

u]+m= 'I'mU';+ _ Wi
i=n

Project analysis covariance onto wavelet basis:

0_ = wTp2w

Project cova.riance propagator onto wavelet basis:

The important question here is how to decide which part of _ and t}2 to retain. Simply

trnncating after L terms is equivalent to removing all the smallest scales. We showed in

the constituent assimilation example that smaller scales can be more important than larger

scales. In this Burger's equation example we create small scale features in one dimension

particularly as the viscosity is decreased. In a sharp frontal system, forecast errors tend to

be larger and very' localized because any velocity (or dispersion) errors are amplified. It is

also important that the resulting forecast covariance is positive definite so that the Kalman

gain equation can be solved. Any truncation of the wavelet space representation of P= is

carried out on entire rows and colunms, rather than on individual matrix entries.

The matrix system in equation 16 is projected onto a wavelet basis as described by'

equations (6-11)

/'_+_ 0_)(_ r) (Qm) (24)f _--- (lI'lrn) ( q-

In order to retain the most important components of the covariance the rows and columns

of 15_ are re-ordered using the magnitude of the main diagonal a.s the ordering criterion.

Note that in wavelet space, this diagonal t.erm contains information on both the variance

and correlation fields. Simultaneously, we must reorder the covariance propagator ,_TLM

and its transpose as well.

13



After reordering, the covariancepropagationequationsare truncated to to L terms and

covariancepropagation is carried out in waveletspace.

= )L( o)L('I'm)L+ (Q )L

Transform forecast covariance to physical space:

(25)

Update I(alman gain:

p_+m = W15}+mwT (26)

Kn+m = p_+-,HT(Hp}+mHT + R,_+m )--1

Calculate Analysis:

lan+rn
a

Update the analysis covariance

(27)

= uf"'_+_ + K'_+m(u'_+m,o - Hu} +m) (28)

p2 +_ = (I - K_+mH)p_+ '_ (29)

We have carried out an ensemble of 15 assimilations for each of 4 wavelet expansions of

the covariances, L=4,8,16 and 128. Each assimilation differs in both the initial condition and

model error perturbations, but all have the same statistics. We initially assume that both the

initial, model error and observation statistics are known perfectly. The full (untruncated)

and approximate EKF are compared for Burger's equation on the domain

O<x<l

using initial conditions on u

uo(x) = sin(2rrx)x < 0.1 (30)

uo(x)=0 0.1 <x<l.0 (31)

and run parameters 5t = 0.01, m = 20, U = 1 and t, = 0.005.

We have carried out an ensemble of 15 assimilations for each of 4 wavelet expansions of

the covariances, L=4,8,16 and 128. Each assimilation differs in both the initial condition

and model error perturbations, but all have the same statistics. We assume that both the

initial, model error and observation statistics are known perfectly.

14



The modelerror andobservationalerror covarianceshavecorrelation lengthsof Lc = 0.02

and variance of 0.0001. The simulation are run for 180 timesteps with observations made

every 20 timesteps. There are observations at every grid point for 0.:38 _< x _< 1 and none

elsewhere.

The initial uo(x) field from equations 30 and 31 is shown in Figure 9 (a). Advection will

result in the spike in u(x) to move to the right, while viscosity will cause a decay in the peak.

The non-linearity of Burger's equation maintains a steep front on the right side of the peak.

Figure 9 (by shows the ensemble average (u/} at the final state for the full set of coefficients

(L=128) and partial expansions (L=8,16). The initial spike has moved to the right, just into

the observed region (x >_ 0.38). The only significant differences in the final state u/between

the different expansions is in the unobserved region.

The ensemble mean of the rms errors (u - ut) for of each case is shown in figure 10. A

87 % reduction in the number of coefficients (L=16) results in rms errors only marginally

higher than the full Kalman system. A further reduction to L=8 (a 94 % reduction) only

increases the error by about .5 %, whereas the L=4 case (97 % reduction) results in a roughly

15 % rise in the peak rms error.

We have also calculated the energy retained in the approximated covariance matrices, as a

basis of comparison with the covariance approximation done on the constituent assimilation.

The 4,8 and 16 term expansions represent 3, 6 and 12 % of the coefficients in one dimension

(or about 0.1, .4 and 1.6 % if extended to two dimensions). The energy retained in each 1-d

case is found (by equation 2) ,54, 72 and 81% respectively. Therefore, in the one-dimensional

Burger's equation, we only need to retain about. 74 % of the energy by retaining 6 % of the

coefficients in order to achieve assimilation results close to the full system.

In order to understand how approximating the error covariance by' truncating its wavelet

expansion (equation 25) affects the assimilation results of Figures 9 and 10 we need to con-

sider representation errors in the error covariance itself. We consider the variance and co-

variance fields separately. Figure 11 shows the diagonal of the forecast covariance matrix,P/

(an estimate of the error variance) a.t the end of the assimilation for the full system (bold

line) and wavelet approximations which retain L=32 (thin line), L=16 (grey line) and L=4

(dash-dot) wavelet coefficients. All of the approximate error variances have some loss that

decreases as the number of retained terms is increased. More significantly, both the L=8 and

15



L=16 at leastpartially retain the peak in error variancearound :r = 0.35 that is associated

with the frontal structure in u. Because the L=16 case results ina very slight increase in the

rms error, the accurate approximation of the variance spike in the observation void region

appears to be a key component of the covariance approximation.

Regions of steep gradients tend to result in the largest forecast errors because small

dispersive type errors can cause errors of large amplitude. When larger forecast errors are

coupled with the substantial underestimate of L = 4 case in Figure 11, the Kalman filter

will weight the forecast to much and result in the larger errors of Figure 10. In particular,

the L = 4 case completely misses the error variance peak, indicating that the Kahnan filter

will be unable to distinguish between regions with and without steep gradients. The result

is the

Figure 12 shows a plot of a row from Pf corresponding to the position z = 0.35 at the end

of the assimilation. This plot shows the covariance between this position and other points

within the system. Here we see that the L = 8, 16 wavelet expansions accurately approximate

the covariance except at the peak, which corresponds to the variance shown in Figure 11.

The coarsest approximation L = 4 again has significant degraded accuracy. Not only is most

of the covariance structure lost, but the correlation length is significantly increased. Since

the covariance is a product of both the variance and the correlation, this indicates that the

forecast error correlation is accurate down to L = 8 and significant increases in error occur

for smaller expansions.

We next consider whether the loss of accuracy is due to truncation of the covariance itself

or to truncation of the propagator, equation . Figure 13 shows the difference between the

full and truncated wavelet representation along the main diagonal (Pr - (Pr)z, for example)

for the cases L = 8, 16. For L = 16, the difference in the diagonal are very small up to

(and including) the 16 th and then become large. This jump at the 17 th coetficient is due

entirely to the truncation of the covariance, and the propagator truncation has no impact.

For the L = 8 case, we see that the differences in the first 8 coefficients are on the same

order as the larger coefficients, indicating that propagation errors have become important.

When the expansion is truncated at 4 coefficients, the propagator truncation errors become

more important than covariance truncation errors, since the 4th coefficient difference is the

largest. Thus we see that only when the system becomes most severely truncated do the
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errors incurred by truncating the dynamics @ dominate. This confirms the qualitative

argument made about the reduction of significant modes in the projection of Figure 6(b).

We have also calculated the energy retained in the approximated covariance matrices, as a

basis of comparison with the covariance approximation done on the constituent assimilation.

The 4,8 and 16 term expansions represent 3, 6 and 12 % of the coefficients in one dimension

(or about 0.1, .4 and 1.6 % if extended to two dimensions). The energy retained in each 1-d

case is found (by, equation 2) 54, 72 and 81% respectively. Therefore, in the one-dimensional

Burger's equation, we only need to retain about 74 % of the energy by retaining 6 % of the

coeffÉcients in order to achieve assimilation results close to the full system.

Finally, we return to the question of the impact of truncation of the TLM on the TLM.

While the TLM used here for Burger's equation is non-normal, the coefficient ordering has

been such that, except for the first eight terms, the coefficient magnitudes decrease monoton-

ically. Thus, as long as the first few coarsest scales are retained (up to j=3 in this case), the

remaining decay exponentially. In this TLM, wavelet representation results in a nearly' diag-

onal matrix with entries that decay' rapidly' towards zero as the coefficient index increases,

as shown in Figure 14. Thus truncation of finer scales past some cutoff will not result in a

loss of the most significant dvnamics in this particular case.

Conclusions

We have investigated the structure of the projection of the error covariance matrix onto a

wavelet basis for two disparate problems: two-dimensional constituent assimilation and the

one-dimensional Burger's equation. In in the former it is shown that accurate representation

of the covariances (99 % of the energy) using a small fraction (1.5 %) of the coefficients. The

largest errors in this approximation occur in regions of steepest gradients of the covariance

(a kind of constituent front). In the Burger's equation assimilation we demonstrate that

the representation is accurate enough to obtain nearly optimal assimilation results using

an extended Kalman filter when about 6 % of the coefficients 74 % of the energy and are

retained. The assimilation results in sharply higher rms errors when the nmnber of retained

coefficients is dropped below this level (3 % of coefficients). At this point the forecast error

covariance matrix does not resolve the spike in variance occurring at the front and results in

a correlation length that is too long. Significant loss of the dynamics is also seen in this level

17



of truncation. The important conclusionfrom this failure is that theseimportant covariance

characteristicscan be attained with just 6 % of the coefficientsresulting in a near optimal
assimilation.

The needfor adaptivity is demonstratedin the constituent assimilationexample, while

the Burger'sequationassimilationshowshow it canwork. In spiteof therelative simplicity of

the one-dimensionalexample, it containsa numberof the featuresof morecomplexsystems.

The adaptiveschemeis able to capture the high variance region associated with the moving

front, and severe truncation of the wavelet coefficients does not cause significant loss in

dynamics. Extension of this scheme to multi-dimensional constituent assimilation is shown

to be viable by these results and is goal of ongoing work.
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Figure 1:7 day evolution of error correlation field for CH4.

space from 0 to 1 (0.5 is the lightest shade).

100 150

(a) Day 1

100 150

(b) Day 7

The contour levels are equally

21



-4,

40

7O

Latitude 0 0

Longitude (a) Day 1

10

,il
O

40

30

10

Latitude 0
10

7O

Longitude (b) Day' 7
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8,16 and 128 wavelet coeMcients in the covariance approximation. (a) Initial value of u(x,t),
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Figure 12: Covariance at point z = 0.35 at time t = 120. Except for some variance loss,

the 8 and 16 term wavelet expansions accurately represent the covariance while the 4 term

expansion misses most of the covariance structure.
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